Al-Fe-Zn (Aluminum-Iron-Zinc)

V. Raghavan

The early results on this ternary system were reviewed by [1992Rag]. An update on the phase equilibria of Zn-rich alloys by [2003Rag1] presented an isothermal section at 450 °C for metastable and stable equilibria from [1992Per] and two sections at 470 and 440 °C from [1995Yam]. Recently, a full thermodynamic description of this system was reported by [2007Nak], using in the optimization the activities derived from the emf measurements of [1995Yam]. 1998Yam].

Binary Systems

The Al-Fe phase diagram [Massalski2] depicts several intermediate phases. Apart from the high temperature phase Fe_4Al_5 (ϵ), there are three phases stable down to room temperature: FeAl2 (triclinic), Fe2Al5 (70-73 at.% Al; orthorhombic) and FeAl₃ (Fe₄Al₁₃) (74.5-76.6 at.% Al; monoclinic). The Al-Zn phase diagram [Massaslski2] depicts a eutectic reaction at 381 °C between (Al) and (Zn). In the (Al) region, a miscibility gap occurs in the solid state with the monotectoid reaction at 277 °C and the critical temperature at 351.5 °C. There are no intermediate phases in this system. In the Fe-Zn system [2003Rag2], the intermediate phases are: Γ (Fe₃Zn₁₀; Cu₅Zn₈-type cubic), Γ_1 (Fe₁₁Zn₄₀; cubic, space group $F\overline{4}3m$, 408 atoms/cell), δ (FeZn₁₀; FeZn₁₀-type hexagonal), and ζ (CoZn₁₃-type monoclinic). The above nomenclature for the Fe-Zn compounds is from [1982Kub] and is adopted among others by [2007Nak]. Γ and Γ_1 are denoted as Γ_1 and Γ_2 respectively in the publications of Perrot and co-workers. Recently, [2005Nak] provided a revised thermodynamic description of the Fe-Zn system.

Computed Ternary Phase Equilibria

Nakano et al. [2007Nak] presented a full thermodynamic assessment of this system. Crystallographically-consistent sublattice models for the Fe-Zn intermetallic phases [2005Nak] were used to predict the most probable host sublattices for the Al atoms. The sublattice models of Fe-Al binary compounds FeAl₂, Fe₂Al₅, and Fe₄Al₁₃ were suitably modified to allow the description of the Zn solubility in them. The ternary phase found by [1992Per], [1995Yam], and [2002Tan] and discussed in [2003Rag1] was denoted variously as Γ_2 by [1992Per] and [2007Nak], T by [2002Tan] and Γ'_1 by [2003Rag1]. The cubic structure of this ternary phase is presumably isomorphic with the binary phase Γ_1 (denoted Γ_2 by [1992Per]). According to [2007Nak], "it is justifiable to deem that Γ_2 (ternary phase) and Γ_1 are two composition sets of the same phase having a miscibility gap". However, using a single analytical expression for this phase led to difficulties in the optimization. Due

Fig. 1 Al-Fe-Zn computed metastable isothermal section at 480 °C near the Zn corner [2007Nak]

to this, [2007Nak] considered the ternary phase to be a separate phase, whose sublattice model resembled that of the binary phase. Experimental results for the optimization were carefully chosen by [2007Nak] from those which correspond to the equilibrium state. Extensive data on the activities derived from the emf measurements of [1995Yam, 1998Yam] were used in the optimization. The optimized interaction parameters for the binary phases and the ternary phase were listed.

Industrial galvanizing conditions correspond to short annealing times and to metastable equilibrium. The ternary phase does not appear under such conditions. The isothermal sections near Zn corner calculated by [2007Nak] by suppressing the ternary phase at 480, 470, 460, and 450 °C are shown in Fig. 1-4, respectively. The experimental points from different sources for the liquid/solid equilibrium are marked. Figure 5 shows the isothermal section at 450 °C under equilibrium conditions. The ternary phase (marked Γ'_1) is present. [2007Nak] also plotted a computed isothermal section at 450 °C for a wider area near the Zn corner and compared them with more experimental results.

References

1982Kub: O. Kubaschewski, Fe-Zn (Iron-Zinc), Iron-Binary Phase Diagrams, Springer-Verlag, Berlin, p. 172-175

Fig. 2 Al-Fe-Zn computed metastable isothermal section at 470 °C near the Zn corner [2007Nak]

Fig. 4 Al-Fe-Zn computed metastable isothermal section at 450 °C near the Zn corner [2007Nak]

- **1992Per:** P. Perrot, J.C. Tissier, and J.Y. Dauphin, Stable and Metastable Equilibria in the Fe-Zn-Al System at 450 °C, *Z. Metallkd.*, 1992, **83**(11), p 786-790
- 1992Rag: V. Raghavan, Al-Fe-Zn (Aluminum-Iron-Zinc), *Phase Diagrams of Ternary Iron Alloys, Part 6A*, Indian Institute of Metals, Calcutta, 1992, p 215-223
- 1995Yam: S. Yamaguchi, H. Makino, A. Sakatoku, and Y. Iguchi, Phase Stability of Dross Phases in Equilibrium with Liquid

Fig. 3 Al-Fe-Zn computed metastable isothermal section at 460 °C near the Zn corner [2007Nak]

Fig. 5 Al-Fe-Zn computed stable isothermal section at 450 °C near the Zn corner [2007Nak]

Zinc Measured by the Al Sensor, *Proc. Int. Conf. Galvatech.* '95., Iron and Steel Society, Warrendale, PA, 1995, p 787-794

- **1998Yam:** S. Yamaguchi, Zinc and Zinc Alloy Coated Sheet Steels, *Proc. Int. Conf. Galvatech.* '98, Iron and Steel Society, Warrendale, PA, 1998, p 84-89
- 2002Tan: N.Y. Tang and X. Su, On the Ternary Phase in the Zinc Rich Corner of the Zn-Al-Fe System at Temperatures

below 450 °C, Metall. Mater. Trans. A., 2002, 33A, p 1559-1561

- **2003Rag1:** V. Raghavan, Al-Fe-Zn (Aluminum-Iron-Zinc), J. *Phase Equilib.*, 2003, **24**(6), p 546-550
- 2003Rag2: V. Raghavan, Fe-Zn (Iron-Zinc), J. Phase Equilib., 2003, 24(6), p 544-545
- 2005Nak: J. Nakano, V.D. Malakov, and G.R. Purdy, A Crystallographically Consistent Optimization of the Zn-Fe System, *CALPHAD*, 2005, 29(4), p 276-288
- 2007Nak: J. Nakano, D.V. Malakov, S. Yamaguchi, and G.R. Purdy, A Full Thermodynamic Optimization of the Zn-Fe-Al System Within the 420-500 °C Temperature Range, *CALPHAD*, 2007, **31**, p 125-140